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Abstract Lubrication theory is devoted to the study of thin-film flows, More often, the fluid can be considered
as a Newtonian one and no-slip boundary conditions can be retained for the velocity at the fluid solid interface.
With these assumptions it is possible to deduce from the (Navier) Stokes system a simplified equation describing
the flow: the Reynolds equation. It allows to compute the pressure distribution inside the film and to obtain overall
performances of a lubricated device such as load and friction coefficient. For very thin films, however, surface
effects at the fluid solid interface become very important and no-slip conditions cannot be retained. Solid surfaces
exert some influence on the liquid molecules and the effective shear viscosity along the boundary differs from the
classical bulk shear viscosity. Moreover, the microstructure of the fluid cannot be ignored, especially the effects
of solid-particle additives in the lubricant. Micropolar theory for fluids is often adopted to account of such micro-
structure and microrotation. In the present study, a thin micropolar fluid model with new boundary conditions at the
fluid–solid interface is considered. This condition links velocity and microrotation at the interface by introducing
a so-called “boundary viscosity”. By way of asymptotic analysis, a generalized micropolar Reynolds equation is
obtained. Numerical results show the influence of the new boundary conditions for the load and friction coefficients.
Comparisons are made with other works that retain the no-slip boundary conditions.

Keywords Boundary viscosity · Lubrication · Micropolar fluid · Reynolds equation · Slippage effect

1 Introduction

Studies related to lubricated devices in which the gap between the moving surfaces decreases to molecular dimen-
sions concern both experimental and theoretical aspects. Experimental results [1–7] show that the solid-surface
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90 G. Bayada et al.

force exerts some influence on the liquid molecules and that the effective shear viscosity along the boundary differs
from the classical bulk shear viscosity. This difference seems to be strongly connected with the nature of the solid
surface [8,9].

A possible way to introduce such experimental facts which retain the suitability of a continuum-mechanical
approach is to use micropolar fluid-film theory. Introduced by Eringen [10], it concerns a classs of fluids with
a microsturucture in which each element can translate or rotate and deform. Later, a simplified theory in which
deformation is ignored was proposed by Eringen [11] and Aero [12]. These equations are a generalization of the
(Newtonian) Navier–Stokes equations and deal with three fields, velocity u, pressure p and microrotation ω, together
with some viscosity parameters and material constants to describe the behaviour of the fluid.

The micropolar equations are

−(ν + νγ )�u + ρ(u.∇)u + ∇ p = 2νγ (∇ × ω), (1)

−(ca + cd)�ω + ρ j (u.∇)ω + 4νγ ω = 2νγ (∇ × u), (2)

div u = 0. (3)

The quantities ν, νγ , ca , cd are different viscosities that characterize the isotrophic properties of the fluid [11–13],
ρ is the mass density and j is a micro-inertia constant.

As it is well known, reasonable boundary conditions have to be specified on velocity and microrotation for
solving such equations. While the no-slip condition is widely used for velocity, the situation is not so clear for
microrotation. In most of the previously mentioned references, a zero boundary condition for microrotation is more
or less explicitly assumed. If s is the given velocity of the wall, these conditions are written:

u = s = (s1, s2) (4)

ω = 0. (5)

Using this set of boundary conditions, micropolar models have been widely used in tribology [11,14–18]. In these
papers, detailed equations are given as well as the procedure to obtain a generalized 1D or 2D Reynolds equation
from the 2D or 3D (Navier) Stokes micropolar equations (1–3)

It was pointed out in [19], see also [20], that another boundary condition can be used for microrotation. Following
[21,22] it is proposed to link the value of the micorotation with the rotation of the velocity by way of a coefficient
α that characterizes the microrotation on the solid surfaces and is computed from a boundary viscosity value,

ω × n = α

2
(∇ × u) × n, (6)

in which n is a normal unit vector to the boundary.
Using conditions (4–6), a “new” generalized micropolar Reynolds equation (30) is derived. Numerical calcu-

lations show the importance of the new parameter α for the performance of lubricated devices for both load and
friction.

However, a mathematical study of the micropolar equations (1–3) has shown [23] that it is not possible to con-
sider boundary conditions such as (6) and to simultaneously retain the no-slip condition (4) for the velocity. This
would be like simultaneously considering, at the same boundary, a Neumann and a Dirichlet boundary condition. A
mathematical choice of velocity condition compatible with (6) can be obtained by using a variational formulation
for the problem (1–3). This condition allows a slippage in the tangential direction and retains a non-peneration
condition in the normal direction n (δ0 is a real parameter)

(u − s) × n = δ0(∇ × ω) × n and u · n = 0. (7)

Let us mention that in most lubrication studies, it is assumed that the speed of the lubricant at the surface equals that
of the solid surface. However, it has been found that wall slip occurs, not only in non-Newtonian flows [24–29], but
also in hydrodynamic lubrication or elasto-hydrodynamic lubrication [30–33]. It seems that such a phenomenon
is linked to physical or chemical interactions of the solid surfaces with the lubricant. Various boundary conditions
have been considered in these works to model this type of slippage. Most of them included limited yield stress or
retain a slippage value proportional to the shear stress.
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Wall slip induced by a micropolar fluid 91

Condition (7) seems to be a new one directly linked to the introduction of the microrotation field ω. We show
how it is possible to obtain a thin-film Reynolds equation taking such boundary conditions into account and we give
some numerical results to show the fluid slippage at the wall. It is of particular interest to show that the slippage
induces a weaker load than that of Bessonov’s model [34] in which no-slip boundary conditions have been retained.

2 Boundary conditions and governing equations

To state the lubrication assumptions, a 3D device is considered and the fluid domain is defined by

E = {(x, y, z); (x, y) ∈ w, 0 < z < h(x, y)}, (8)

where h is the film thickness, and w is a subset of the plane (x, y).
Let �3, �1 be the upper and lower boundaries of E (see Fig.1)
Recalling that ϕ = (ϕ1, ϕ2, ϕ3)

∇ × ϕ =
(

∂ϕ3

∂y
− ∂ϕ2

∂z
,
∂ϕ3

∂x
+ ∂ϕ1

∂z
,
∂ϕ2

∂x
− ∂ϕ1

∂y

)
, (9)

one has the corresponding equations (1–3). The usual boundary conditions for the velocity and microrotation are
assumed on �3

u = 0 on �3, (10)

ω = 0 on �3. (11)

On the part �1 of the boundary, which corresponds to the moving boundary, the impermeability of the wall leads
to

u · n = 0 on �1, (12)

ω · n = 0 on �1, (13)

associated with the boundary conditions discussed in the Introduction

ω × n = α

2
(∇ × u) × n on �1, (14)

(u − s) × n = δ0(∇ × ω) × n on �1, (15)

In [19], it was proposed to define the parameter α as a microrotation retardation at the boundary and to connect it with
the different viscosity coefficients. It has been shown experimentally [35,36] that there are chemical interactions
between a solid surface and the nearest fluid layer. This has to be taken into account, especially for a non-Newtonian
fluid and a very thin-film thickness. This can be done by introducing a viscosity νb near the surface which is different
form ν and νγ . In [19], it was proposed to define α by means of this “boundary viscosity” νb by

α = ν + νγ − νb

νγ

. (16)

Fig. 1 Geometry of a slider
bearing (Domain E in 2D)
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Following [19], it is possible to give physical limits to νb, inducing

0 ≤ νb ≤ ν + νγ ⇒ 0 ≤ α ≤ ν + νγ

νγ

. (17)

The value u − s, if it is not zero, characterises the slippage on �1 and δ0 is an additional parameter which will
enable the influence of this new boundary condition to be controlled.

Let us introduce the dimensionless normalized variables and functions

X = x

L
, Y = y

L
, Z = z

c
, H = h

c
, ε = c

L
,

−
u = u

g0
,

−
p = c2

g0(ν + νγ )L
p,

−
ω = c

g0
ω, Re = ρg0c

ν + νγ

, Re′ = ρ jg0c

ca + cd
, (18)

N 2 = νγ

ν + νγ

, RM = ca + cd

(ν + νγ )c2 ,
−
s = s

g0
, δ = δ0

c2 .

where g0 is a characteristic velocity of the surface, L a characteristic length of the lubricated area of the device and
c that of the film thickness. The usual lubrication assumptions are made to derive the Reynolds equation.

1. Flow is laminar: vortex and turbulence do not occur anywhere in the film.
2. Body forces are neglected, e.g. the gravitational force and the magnetic field are assumed to be negligible.
3. The film is sufficiently thin compared with the length and the span of the bearing to allow the curvature of the

fluid film to be ignored. The rotational velocities may be replaced by translational velocities (h � L)

Re is the modified Reynolds number where ν has been replaced by ν + νγ and this number is always smaller
than the classical Reynolds number. For lubrication problems Re � 1 and is generally of the order of 10−3. Also
it is reasonable to assume that Re′ � 1.

Further, ε is small, of the order of 10−3. Using these assumptions and the previous requirements, Eqs. 1–3 reduce
to

−∂2ū1

∂ Z2 + ∂ p̄

∂ X
= −2N 2 ∂ω̄2

∂ Z
, (19)

−∂2ū2

∂ Z2 + ∂ p̄

∂Y
= −2N 2 ∂ω̄1

∂ Z
, (20)

−RM
∂2ω1

∂ Z2 + 4N 2ω1 = −2N 2 ∂u2

∂ Z
, (21)

−RM
∂2ω2

∂ Z2 + 4N 2ω2 = 2N 2 ∂u1

∂ Z
, (22)

∂ p

∂ Z
= 0, u3 = 0, ω3 = 0, (23)

∂

∂ X

[∫ H

0
u1(X, Y, Z)dZ

]
+ ∂

∂Y

[∫ H

0
u2(X, Y, Z)dZ

]
= 0, (24)

with the boundary conditions

∂u1

∂ Z
(X, Y, 0) = 2

α
ω2(X, Y, 0), (25)

∂u2

∂ Z
(X, Y, 0) = − 2

α
ω1(X, Y, 0), (26)

u2(X, Y, 0) − s2 = δ
∂ω1

∂ Z
(X, Y, 0), (27)

u1(X, Y, 0) − s1 = −δ
∂ω2

∂ Z
(X, Y, 0), (28)

u(X, Y, H) = ω(X, Y, H) = 0. (29)
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Wall slip induced by a micropolar fluid 93

The procedure to obtain a solution to Eqs. 19–22 with boundary conditions (25)–(29) is given in the Appendices
1 and 2. Then, the derived generalized Reynolds equation can be written in the following form

∂

∂ X

(
�1

∂ p

∂ X

)
+ ∂

∂Y

(
�1

∂ p

∂Y

)
= ∂

∂ X
(�2s1) + ∂

∂Y
(�2s2), (30)

with, for α �= 1 (see Appendix 1)

�1 = H3

3(1 − N 2)
+

[
γα

2
H2− 2N 2

k

(
cosh(k H) − 1

k
− Hsinh(k H)

)]
A1− 2N 2

A1

(
sinh(k H)

k
−Hcosh(k H)

)
B1,

(31)

�2 =
[
−γα

2
H2 + 2N 2

k

(
cosh(k H) − 1

k
− Hsinh(k H)

)]
A2 + 2N 2

k

(
sinh(k H)

k
− Hcosh(k H)

)
B2, (32)

k = 2N

√
1 − N 2

RM
, γα = 2(1 − αN 2)

α − 1
, (33)

and for α = 1 (see Appendix 2)

�1 = H3

3(1 − N 2)
+ H2

2(1 − N 2)
A′

1 − 2N 2

k

(
sinh(k H)

k
− Hcosh(k H)

)
B ′

1, (34)

�2 = H2

2(1 − N 2)
A′

2 − 2N 2

k

(
sinh(k H)

k
− Hcosh(k H)

)
B ′

2, (35)

(Ai , Bi , A′
i , B ′

i , i = 1, 2 are defined in the Appendices 1 and 2).

3 Comparison with previous studies

In this section, we will consider two particular mechanical devices, a slider bearing and a journal bearing. We
will show the sensitiveness for two operational parameters: the load W and the friction coefficient c f . We aim to
compare the results obtained with our model with those of [16,34] which are related to infinitely long devices in
2D.

In this case, the pressure is a function of X only and the generalized micropolar Reynolds equation (30) becomes

∂

∂ X

(
�1

∂ p

∂ X

)
= ∂

∂ X
(�2s1). (36)

3.1 The slider bearing

As a first example, we consider a simple device with a negative slope described in Fig. 1. The film thickness can be
written by introducing a parameter m

h(x) = c
(

1 + m
x

L

)
, 0 < x < L and m < 0. (37)

The load W along the moving surface �1 is defined by

W =
∫ L

0
p(x, 0)dx . (38)
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The shear stress along the surface �1 is

(ν + νγ )
∂u1

∂z
(x, 0) − 2νγ ω(x, 0). (39)

The friction force F is obtained by integrating the shear stress along the moving surface, thus

F =
∫ L

0

(
(ν + νγ )

∂u1

∂z
(x, 0) − 2νγ ω(x, 0)

)
dx . (40)

The friction coefficient c f is determined by

c f = F

W
. (41)

Using the normalization given in Sect. 2, we define the rescaled film thickness.

H(X) = (1 + m X), 0 < x < 1 and m < 0, (42)

and the corresponding W and F

W =
∫ 1

0
p(X)dX = ε2

g0(ν + νγ )
W, ε = c

L
, (43)

F =
∫ 1

0

(
∂u1

∂ Z
(X, 0) − 2N 2ω(X, 0)

)
dX = ε

g0(ν + νγ )
F. (44)

The normalized friction coefficient c f is determined by

c f = F

W
= 1

ε
c f . (45)

The relative viscosity νb is defined by

νb = νb

ν
. (46)

From Formula (16), the relation between α and νb is

νb = 1 − αN 2

1 − N 2 . (47)

First, we compute the velocity field u1 is given by Eq. 58. We consider its value at the lower boundary Z = 0
and we compare it with the value s1 = 1 which is the velocity of the wall. Obviously, the slippage effect tends to
zero as the parameter δ tends to zero, as shown in Figs. 2–5 for any value νb. For small values of νb, there is a
retardation effect for all points in the contact so that the effective velocity of the fluid near Z = 0 is smaller than
the velocity of the wall, namely 1. For increasing values of νb, the retardation effect is limited to the entrance of
the device while the velocity of the fluid near the exit becomes greater than that of the wall. Then, for νb greater
than the one, the retardation effect disappears. This phenomenon has some direct consequences for the load and the
friction coefficient.

In Figs. 6 and 7, we aim to compare the load W and friction coefficient c f of the present study with values noted:

– W 2, c2 f , obtained by Bessonov [34] making δ = 0.
– W 1, c1 f , obtained by classical micropolar analysis with zero value for the microrotation along the solid surface

(so making δ = 0 and νb = 1
1−N 2 ).

– W 0, c0 f , related to classical newtonian flow (δ = 0, νb = 1, N = 0).

In Fig. 6 we give the normalized load obtained for these various models. As the Newtonian and classical micropolar
models do not rely on the parameters δ and νb, the resulting loads are constant.

As a consequence of the evolution of the slippage effects described previously, the computed load of the slider
is lower than that of the Newtonian case for most of the values of the two boundary-condition parameters δ and
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Wall slip induced by a micropolar fluid 95

Fig. 2 Slippage value against rescaled variable X for different
values of δ, N = 0.3 and RM = 0.01 νb = 0.6

Fig. 3 Slippage value against rescaled variable X for different
values of δ, N = 0.3 and RM = 0.01 νb = 0.95

Fig. 4 Slippage value against resaceld variable X for different
values of δ, N = 0.3 and RM = 0.01 νb = 1

Fig. 5 Slippage value against resaceld variable X for different
values of δ, N = 0.3 and RM = 0.01 νb = 1.05

νb. However, there is a range of values of these parameters for which the load increases, roughly speaking for νb

between 1 and 1/(1 − N 2) and δ smaller than 10−2.
As far as the friction coefficient is concerned, the same difference of behaviour is exhibited (see Fig. 7). The

friction coefficient is greater than the Newtonian one with the exception of two parameters ranges: one near νb = 0,

for which the load tends to zero and the other near νb = 1. For the values δ already mentioned, these lead to an
improvement of the load. Figure 8 summarizes these results, making clear the ability to improve both the friction
coefficient and load by varying only the boundary conditions of the fluid–surface interface. As a difference with the
preceding figures, the micropolar parameter N = 0.1 is chosen instead of N = 0.3 to show the existence of such a
phenomenon, even for a moderate value of N .

3.2 The journal bearing

In this case, the fluid is contained between two cylinders in the domain defined in polar coordinates by

H(θ) = c(1 + ζ cos θ), c > 0, 0 < ζ < 1, 0 ≤ θ < 2π, (48)
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Fig. 6 Normalized load against νb for different values of the
slippage parameters δ, for N = 0.3 and RM = 0.01

Fig. 7 Normalized friction coefficient against νb for different
values of the parameters δ, for N = 0.3 and RM = 0.01

Fig. 8 Real friction coefficients against real loads for different
values of δ, for N = 0.1 and RM = 0.01 (slider bearing)

Fig. 9 Real friction coefficients against real loads for different
values of δ, N = 0.1 and RM = 0.01, ζ = 0.5, ε = 0.1,
g0 = 1 m/s, and ν = 10 kg/m (journal bearing)

where ζ is the eccentricity. Let us also note that, due to the convergent–divergent phase, the solution to the Reynolds
equation is negative in the divergent part of the film thickness (cavitation phenomenon) [37]. Various models can
be used to take such a phenomenon into account. To compare with [16], We will use the half Sommerfeld bound-
ary-condition model in which the pressure is assumed to be zero for θ ≥ π . For the computation of W and F we
take only the positive part of the pressure.

Due to the circular shape, the load is now given by

W =
√

W 2
n + W 2

m, (49)

where

Wn =
∫ 2π

0
p cos θdθ and Wm =

∫ 2π

0
p sin θdθ (50)

By introducing X = Lθ , and 0 < z < H(θ), we may define the friction force by

F = L
∫ 2π

0

(
(ν + νγ )

∂u1

∂z
(Lθ, 0) − 2νγ ω(Lθ, 0)

)
dθ. (51)

As with the slider bearing, we aim to compare the results (loads and friction coefficients) obtained by our model
with those of [16] (namely W1, c1 f ) and [34] (namely W2, c2 f ). Although the geometry of the slider and journal
bearings are different and in spite of the occurrence of the cavitation phenomenon, numerical results are very sim-
ilar in both cases. The preceding comments are still valid, as they appear in Fig. 9 where the real load and real
friction-coefficient curves are drawn.
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4 Conclusions

Whereas the classical no-slip boundary conditions for the velocity are well accepted for usual lubricated devices,this
is not the case as the gap between the moving surfaces decreases to molecular dimensions. Various explanations have
been proposed to explain the discrepancies between theoretical and experimental results. Some of them address the
influence of micro-geometry, while some others point to the interaction between fluid and solid molecules. It has
been shown that introducing a new boundary condition at the fluid–solid interface, associated with the existence of
a local boundary viscosity, can lead to a mathematical well-posed Stokes problem. However, it has been proved that
it is impossible to simultaneously retain a no-slip condition for the velocity on the same interface. A mathematical
choice of velocity condition compatible with this new boundary condition has been obtained by using a variational
formulation for the Stokes-related problem. This condition allows a slippage in the tangential direction and retains
a non-penetration condition in the normal direction. This slippage is proportional to the microrotation field and not
to the shear stress as usual. As a direct consequence of the introduction of this no-slip phenomenon, a decrease of
the performance of the lubricated devices must be expected. Numerical computations for the two devices show this
decrease with the exception of a specific range of the boundary parameters for which both load and friction are
improved.

Using the present study as a starting point, various improvements can be proposed. The first one is the generaliza-
tion of the asymptotic study which leads to the Reynolds equation to a truly nonlinear Navier–Stokes system (and
not only Stokes system). In the same way, introducing a time-dependent geometry could be useful to model squeeze
experiments in which the upper surface of the device moves downwards. Another possible way is linked to the
numerical observation of local improvements of performances for specific values of the parameters. How can this
be explained? Can the geometry of the lubricated device be optimized in such a way that this range of parameters
be enlarged? Finally, the problem of introducing micro-roughness might be considered for a very small gap, as it is
difficult to maintain the assumption of a very smooth function h. Whereas the homogenization multiscale analysis
is well established in the lubrication field to get an averaged equation from the classical Reynolds equation when the
geometry of the gap performs small periodic oscillations, this is not the case for micro-polar flows. This approach
could be very interesting, as it combines both aspects that seem to explain what happens at the interface between
fluid and solid, namely micro-roughness and chemical effects.

Appendix 1: Computation of the coefficients of the Reynolds equation (a �= 1)

In this Appendix we describe how to obtain the coefficient of the Reynolds equation (30) from the system (19–29)
when the coefficient α differs from 1.

We note that (u1, ω2) and (u2,−ω1) satisfy the same equations and boundary conditions by writing s2 and Y
instead of s1 and X . So we describe only the computation of (u1, ω2). We solve Eqs. 19, 22, (resp. (26), (27)) using
the boundary conditions (25), (28) and (29). First, we integrate Eq. 19 with respect to Z to obtain

∂u1

∂ Z
= ∂ p

∂ X
Z + 2N 2w2 + C(X, Y ), (52)

where C is an unknown function. Putting (52) into (22), we obtain a second-order differential equation

∂2ω2

∂ Z2 − 4N 2

RM
(1 − N 2)ω2 = −2N 2

RM

∂ p

∂ X
Z − 2N 2

RM
C(X, Y ), (53)

The solution is

ω2 = A(X, Y ) cosh(k Z) + B(X, Y ) sinh(k Z) + Z

2(1 − N 2)

∂ p

∂ X
+ C(X, Y )

2(1 − N 2)
, (54)

where k = 2N
√

1−N 2

RM
and A and B are unknown functions.
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98 G. Bayada et al.

Putting this solution into Eq. 52, we can write u1 as follows:

u1 = 2N 2

k
(A(X, Y ) sinh(kz) + B(X, Y ) cosh(k Z)) + Z

2(1 − N 2)

∂ p

∂ X
+ C(X, Y )

1 − N 2 Z + D(X, Y ). (55)

We rewrite C, D, as a function of A and B, using the boundary conditions.
First, using (25), we obtain for α �= 1

C(X, Y ) = γα(1 − N 2)A(X, Y ), (56)

where γα = 2(1−αN 2)
α−1 .

Using (29) in (55), taking into account (56) and introducing the following split due to the linearity of the system
of equations

A(X, Y ) = A1(X, Y )
∂ p

∂ X
+ A2(X, Y )s2, B(X, Y ) = B1(X, Y )

∂ p

∂ X
+ B2(X, Y )s2. (57)

So u1 and ω2 are

u1(X, Y, Z) =
[(

2N 2

k
(sinh(k Z) − sinh(k H)) + γα(Z − H)

)
A1 + 2N 2

k
(cosh(k H) − cosh(k H))B1

+ Z2 − H2

2(1 − N 2)

]
· ∂ p

∂ X
+

[(
2N 2

k
(sinh(k Z) − sinh(k H)) + γα(Z − H)

)
A2

+2N 2

k
(cosh(k Z) − cosh(k H))B2

]
s1, (58)

and

ω2(X, Y, Z) =
[(

cosh(k Z) + γα

2

)
A1 + sinh(k Z)B1 + Z

2(1 − N 2)

]
∂ p

∂ X

+
[(

cosh(k Z) + γα

2

)
A2 + sinh(k Z)B2

]
s1, (59)

where Ai , Bi (i = 1, 2) are identified, using boundary conditions (28), and ω2(X, Y, H) = 0

A1(X, Y ) = L(X, Y )

2(1 − N 2)
(H [2N 2(1 − cosh(k H)) + δk2] − k sinh(k H)[δ − H2]), (60)

A2(X, Y ) = −kL(X, Y ) sinh(k H) (61)

B1(X, Y ) = L(X, Y )

2(1 − N 2)

(
H [2N 2 sinh(k H) + γαk H ] + k[δ − H2]

[
cos(k H) + γα

2

])
, (62)

B2(X, Y ) = kL(X, Y )
(γα

2
+ cosh(k H)

)
, (63)

and

L(X, Y ) = −
([γα

2
cosh(k H)

]
[2N 2(1 − cosh(k H)) + δk2] + sinh(k H)[γαk H + 2N 2 sinh(k H)]

)−1
. (64)

Similarly, we obtain, using (26), (27) and (29),

u2(X, Y, Z) =
[(

2N 2

k
(sinh(k Z) − sinh(k H)) + γα(Z − H)

)
A1 + 2N 2

k
(cosh(k Z) − cosh(k H))B1

+ Z2 − H2

2(1 − N 2)

]
· ∂ p

∂Y
+

[(
2N 2

k
(sinh(k Z) − sinh(k H)) + γα(Z − H)

)
A2

+2N 2

k
(cosh(k Z) − cosh(k H))B2

]
s2, (65)

ω1(X, Y, Z) = −
[(

cosh(k Z) + γα

2

)
A1 + sinh(k Z)B1 + Z

2(1 − N 2)

]
∂ p

∂Y
−

[(
cosh(k Z) − γα

2

)
A2

+ sinh(k Z)B2

]
s2. (66)
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Appendix 2: Computations of the coefficients of the Reynolds equation (a = 1)

In this Appendix we describe how to obtain the coefficient of the Reynolds equation (30) from the system (19–29)
as the coefficient α = 1.

u1(X, Y, Z) =
[

A′
1

1 − N 2 (Z − H) + 2N 2

k
(cosh(k Z) − cosh(k H))B ′

1 + Z2 − H2

2(1 − N 2)

]
∂ p

∂ X
(67)

+
[

A′
1

1 − N 2 (Z − H) + 2N 2

k
(cosh(k Z) − cosh(k H))B ′

2

]
s1, (68)

ω2(X, Y, Z) =
[

A′
1

1 − N 2 + sinh(k Z)B ′
1 + Z

2(1 − N 2)

]
∂ p

∂ X
+

[
A′

2

2(1 − N 2)
+ sinh(k Z)B ′

2+
]

s2, (69)

u2(X, Y, Z) =
[

A′
1

1 − N 2 (Z − H) + 2N 2

k
(cosh(k Z) − cosh(k H))B ′

1 + Z2 − H2

2(1 − N 2)

]
∂ p

∂Y
(70)

+
[

A′
2

1 − N 2 (Z − H) + 2N 2

k
(cosh(k Z) − cosh(k H))B ′

2

]
s2, (71)

ω1(X, Y, Z) = −
[

A′
1

2(1 − N 2)
+ sinh(k Z)B ′

1 + Z

2(1 − N 2)

]
∂ p

∂Y
−

[
sinh(k Z)B ′

2 + A′
2

2(1 − N 2)

]
s2, (72)

where

A′
1(X, Y ) = L ′(X, Y )(H [2N 2(1 − cosh(k H)) + δk2] − k sinh(k H)[δ − H2]), (73)

A′
2(X, Y ) = −2(1 − N 2)kL ′(X, Y ) sinh(k H), (74)

B ′
1(X, Y ) = L ′(X, Y )

2(1 − N 2)
+ (δ + H2)k, (75)

B ′
2(X, Y ) = kL ′(X, Y ) (76)

with

L ′(X, Y ) = −(2N 2(1 − cosh(k H)) + δk2 + 2Hk sinh(k H))−1. (77)

we note that, as α tends to unity, L tends to zero, while γα

2 L tends to L ′. Hence it is easily verified that

A1, A2 −→ 0, B1 −→ B ′
1 and B2 −→ B ′

2, (78)

while

γα A1 −→ A′
1

1 − N 2 , γα A2 −→ A′
2

1 − N 2 . (79)
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